Note: The information contained herein is intended to assist OEM’s, Dealers and Users of electric vehicles in the application, installation and service of GE solid-state controllers. This manual does not purport to cover all variations in OEM vehicle types. Nor does it provide for every possible contingency to be met involving vehicle installation, operation or maintenance. For additional information and/or problem resolution, please refer the matter to the OEM vehicle manufacturer through his normal field service channels. Do not contact GE directly for this assistance.

General Electric Company August 2006

Table of Contents

Section 1.0 INTRODUCTION ... 3

1.1 Motor Characteristics .. 3
1.2 Solid-State Reversing .. 4
1.3 Flexible System Application .. 4
1.4 More Features with Fewer Components ... 4

Section 2.0 FEATURES OF SX FAMILY OF MOTOR CONTROLLERS 4

2.1 Performance .. 4
2.1.1 Oscillator Card Features .. 4
2.1.1.a Standard Operation ... 4
2.1.1.b Control Acceleration .. 5
2.1.2 Current Limit .. 5
2.1.3 Plug Braking ... 5
2.1.4 Regenerative Braking to Base Speed ... 5
2.1.5 Auxiliary Speed Control .. 5
2.1.5.a Field Weakening ... 5
2.1.5.b Speed Limits .. 5
2.1.5.c Top Speed Regulation ... 5
2.1.6 Ramp Start
2.1.7 On-Board Coil Drivers and Internal Coil Suppression
2.2 System Protective Override
2.2.1 Static Return to Off (SRO)
2.2.2 Accelerator Volts Hold Off
2.2.3 Pulse Monitor Trip (PMT)
2.2.4 Thermal Protector (TP)
2.2.5 Low Voltage
2.3 Diagnostics
2.3.1 Status Codes
2.3.1.a Standard Status Codes
2.3.1.b Stored Status Codes
2.3.2 Odometer Readings
2.3.3 RS-232 Communication Port
2.3.4 Circuit Board Coil Driver Modules

Section 3.0 ORDERING INFORMATION, ELEMENTARY AND OUTLINE DRAWINGS
3.1 Ordering Information for Separately Excited Controls
3.2 Outline: Gen IV Package Size
3.3 Standard Elementary for Golf Car Application
3.4 Golf Car Application Input/Output List

Section 4.0 TROUBLESHOOTING AND DIAGNOSTIC STATUS CODES
4.1 General Maintenance Instructions
4.2 Cable Routing and Separation
4.2.1 Application Responsibility
4.2.2 Signal/Power Level Definitions
4.2.2.a Low Level Signals (Level L)
4.2.2.b High Level Signals (Level H)
4.2.2.c Medium-Power Signals (Level MP)
4.2.2.d High-Power Signals (Level HP)
4.2.3 Cable Spacing Guidelines
4.2.3.a General Cable Spacing
4.2.4 Cabling for Vehicle Retrofits
4.2.5 RF Interference
4.2.6 Suppression
4.3 Recommended Lubrication of Pins and Sockets Prior to Installation
4.4 General Troubleshooting Instructions
4.5 Traction Controller Status Codes

Section 5.0 SET UP FUNCTIONS FOR TRACTION CONTROLLER
5.1 Summary of Current Limit Adjustments

Section 6.0 MEMORY MAP
Section 1. INTRODUCTION

Section 1.1 Motor Characteristics

The level of sophistication in the controllability of traction motors has changed greatly over the past several years. Vehicle manufacturers and users are continuing to expect more value and flexibility in electric vehicle motor and control systems as they are applied today. In order to respond to these market demands, traction system designers have been forced to develop new approaches to reduce cost and improve functions and features of the overall system. Development is being done in a multi-generational format that allows the market to take advantage of today's technology, while looking forward to new advances on the horizon. GE has introduced a second generation system using separately excited DC shunt wound motors. The separately excited DC motor system offers many of the features that are generally found on the advanced AC systems. Historically, most electric vehicles have relied on series motor designs because of their ability to produce very high levels of torque at low speeds. But, as the demand for high efficiency systems increases, i.e., systems that are more closely applied to customers’ specific torque requirements, shunt motors are now often being considered over series motors. In most applications, by independently controlling the field and armature currents in the separately excited motor, the best attributes of both the series and the shunt wound motors can be combined.

As shown in the typical performance curves of Figure 1, the high torque at low speed characteristic of the series motor is evident.

In a shunt motor, the field is connected directly across the voltage source and is therefore independent of variations in load and armature current. If field strength is held constant, the torque developed will vary directly with the armature current. If the mechanical load on the motor increases, the motor slows down, reducing the back EMF (which depends on the speed, as well as the constant field strength). The reduced back EMF allows the armature current to increase, providing the greater torque needed to drive the increased mechanical load. If the mechanical load is decreased, the process reverses. The motor speed and the back EMF increase, while the armature current and the torque developed decrease. Thus, whenever the load changes, the speed changes also, until the motor is again in electrical balance.

In a shunt motor, the variation of speed from no load to normal full load on level ground is less than 10%. For this reason, shunt motors are considered to be constant speed motors (Figure 2).

In the separately excited motor, the motor is operated as a fixed field shunt motor in the normal running range. However, when additional torque is required, for example, to climb non-level terrain, such as ramps and the like, the field current is increased to provide the higher level of torque. In most cases, the armature to field ampere turn ratio can be very similar to that of a comparable size series motor (Figure 3.)
Aside from the constant horsepower characteristics described above, there are many other features that provide increased performance and lower cost. The following description provides a brief introduction to some of these features.

Section 1.2 Solid-State Reversing

The direction of armature rotation on a shunt motor is determined by the direction in which current flows through the field windings. Because of the shunt motor field, typically only requires about 10% of the armature current at full torque, it is normally cost effective to replace the double-pole, double-throw reversing contactor with a low power transistor H-Bridge circuit (Figure 4).

By energizing the transistors in pairs, current can be made to flow in either direction in the field. The field and armature control circuits typically operate at 15KHZ, a frequency range normally above human hearing. This high frequency, coupled with the elimination of directional contactors, provides for very quiet vehicle operation.

The line contactor is normally the only contactor required for the shunt motor traction circuit. This contactor is used for both pre-charge of the line capacitors and for emergency shut down of the motor circuit, in case of problems that would cause a full motor torque condition. The line can be energized and de-energized by the various logic combinations of the vehicle, i.e. activate on key or start switch closure, and de-energize on time out of idle vehicle. Again, these options add to the quiet operation of the vehicle.

Section 1.3 Flexible System Application

Because the shunt motor controller has the ability to control both the armature and field circuits independently, the system can normally be adjusted for maximum system efficiencies at certain operating parameters. Generally speaking, with the ability to independently control the field and armature, the motor performance curve can be maximized through proper control application.

Section 1.4 More Features with Fewer Components

Field weakening with a series wound motor is accomplished by placing a resistor in parallel with the field winding of the motor. Bypassing some of the current flowing in the field into the resistor causes the field current to be less, or weakened. With the field weakened, the motor speed will increase, giving the effect of “overdrive”. To change the “overdrive speed”, it is necessary to change the resistor value. In a separately excited motor, independent control of the field current provides for infinite adjustments of “overdrive” levels, between the motor base speed and maximum weak field. The desirability of this feature is enhanced by the elimination of the contactor and resistor required for field weakening with a series motor.

With a separately excited motor, overhauling speed limit, or downhill speed, will also be more constant. By its nature, the shunt motor will try to maintain a constant speed downhill. This characteristic can be enhanced by increasing the field strength with the control. Overhauling load control works in just the opposite way of field weakening, as armature rotation slows with the increase of current in the field. An extension of this feature is a zero-speed detect feature which prevents the vehicle from free-wheeling down an incline, should the operator neglect to set the brake.

For GE, the future is now, as we make available a new generation of electric traction motor systems for electric vehicles having separately excited DC shunt motors and controls. Features that were once thought to be only available on future AC or brushless DC technology vehicles systems are now achievable and affordable.

Section 2. FEATURES OF SX FAMILY OF TRANSISTOR MOTOR CONTROLLERS

Section 2.1 Performance

Section 2.1.1 Oscillator Card Features
Section 2.1.1.a Standard Operation
The oscillator section of the card has two adjustable features, creep speed and minimum field current. The creep speed can be adjusted by Function 2 of the handset. The field control section allows the adjustment of the field weakening level in order to set the top speed of the motor. This top speed function (Minimum Field Current) is enabled when the armature current is less than the value set by Function 24. Top Speed can be adjusted by Function 7 of the handset.

The % ON-time has a range of approximately 0 to 100 percent. The SX controllers operate at a constant frequency and the % ON-time is controlled by the pulse width of the voltage applied to the motor circuits.

Section 2.1.1.b Control Acceleration

This feature allows for adjustment of the rate of time it takes for the control to accelerate to 100% applied battery voltage to the motor on hard acceleration. Armature C/A is adjusted by Function 3 from 0.1 to 22 seconds.

Section 2.1.2 Current Limit

This circuit monitors motor current by utilizing sensors in series with the armature and field windings. The information detected by the sensor is fed back to the card so that current may be limited to a preset value. If heavy load currents are detected, this circuit overrides the oscillator and limits the average current to a value set by Function 4 and Function 8 of the Handset. The C/L setting is based on the maximum thermal rating of the control. Because of the flyback current through 3REC, the motor current is usually greater than battery current, except at 100% ON time.

Section 2.1.3 Plug Braking

Slow down is accomplished when reversing direction by providing a small amount of retarding torque for deceleration. If the vehicle is moving, and the directional lever is moved from one direction to the other, the plug signal is initiated. Once the plug signal has been initiated, the field is reversed, and the armature current is regulated to the plug current limit as set by Function 5. Armature current is regulated by increasing the field current as the vehicle slows down. Once the field current reaches a preset value, set by Function 10, and armature plug current can no longer be maintained, the braking function is canceled, and the control reverts back to motoring.

All energy produced by the motor during plugging is dumped as heat in the motor in this braking mode.

Section 2.1.4 Regenerative Braking to Base Speed

Regenerative braking to base speed is a function of the vehicle motor design which slows the vehicle to a speed corresponding to the base speed of the motor whenever the start switch is opened or the control detects an overspeed condition. The field FETs pulse on/off to regulate the armature current. During regen, armature current is allowed to flow from the armature through the current sensor, the battery, the armature transistor and back to the armature. All regen current is returned to the battery. Regen current will continue to flow until the speed of the motor drops below its base speed, at which point the vehicle will coast.

Section 2.1.5 Auxiliary Speed Control

Section 2.1.5.a Field Weakening

This function allows the adjustment of the field weakening level in order to set the top speed of the motor. The function is enabled when the armature current is less than the value set by Function 24 and the accelerator input voltage is greater than 2.9 volts. It is important to note that this function is used to optimize motor and control performance, and this setting will be determined by GE and OEM engineers at the time of vehicle development. This setting must not be changed by field personnel without the permission of the OEM.

Section 2.1.5.c Top Speed Regulation

This feature requires a system tachometer. The standard GE system tach is built into the motor and provides four pulses per armature revolution. Once the control has been calibrated to the vehicle parameters (gear ratio and wheel rolling radius), using Function 1, speed can be measured with a resolution of +/- 0.1 mph. When traveling down an incline, if the vehicle speed increases to the overspeed setting, the control automatically transitions to the regen mode. The maximum incline on which the control will be able to maintain regulation is determined by the characteristics of the motor, the maximum regen armature current limit setting (Function 9), and the maximum regen field current limit setting (Function 10).

When the vehicle reaches the bottom of the incline, and the vehicle speed decreases below the overspeed setting on the level surface, the control
automatically transitions back to the normal running mode.

Section 2.1.6 Ramp Start

This feature provides maximum control torque to restart a vehicle on an incline. The memory for this function is the directional switch. When stopping on an incline, the directional switch must be left in its original or neutral position to allow the control to initiate full power when restarted. The accelerator potentiometer input will modulate ramp start current.

Section 2.1.7 On-Board Coil Drivers and Internal Coil Suppression

A coil driver for the LINE contactor is on-board the control card. This contactor must have a coil rated for the vehicle battery volts.

Section 2.2 System Protective Override

Section 2.2.1 Static Return to Off (SRO)

This inherent safety feature of the control is designed to prevent the driver from starting the vehicle with the accelerator pedal depressed. If the pedal is depressed when the key is turned on, the control will not operate until the accelerator pedal is no longer depressed.

Section 2.2.2 Accelerator Volts Hold Off

This feature checks the voltage level at the accelerator input whenever the key switch is activated. If, at start-up, the voltage is greater than 0.9 volts, the control will not operate. This feature assures that the control is calling for low speed operation at start up.

Section 2.2.3 Pulse Monitor Trip (PMT)

The PMT design contains three features which shut down, or lock out, control operation if a fault conditions occurs that would cause a disruption of normal vehicle operation:

- Look ahead
- Look again
- Automatic look again and reset

The PMT circuit will not allow the control to start under the following conditions:

- The control monitors both armature and field FET's at start-up and during running.

- The control will not allow the line contactor to close at start-up, or will drop it out during running, if either the armature or field FET's are defective, so as to cause uncontrolled truck movement.

Section 2.2.4 Thermal Protector (TP)

This temperature sensitive device is internal to the power transistor (Q1) module. If the transistor's temperature begins to exceed the design limits, the thermal protector will lower the maximum current limit, and maintain the transistors within their temperature limits. As the control cools, the thermal protector will automatically reset, returning the control to full power.

Section 2.2.5 Low Voltage

Batteries under load, particularly if undersized or more than 80 percent discharged, will produce low voltages at the control terminals. The SX control is designed for use down to 50 percent of a nominal battery voltage of 36-84 volts, and 75 percent of a nominal battery voltage of 24 volts. Lower battery voltage may cause the control to operate improperly, however, the resulting PMT should open the Line contactor, in the event of a failure.

Section 2.3 Diagnostics

The control detects the system's present operating status and this status can be displayed to either the Dash Display or the Handset.

Section 2.3.1 Status Codes

Section 2.3.1a Standard Status Codes

The SX control has a wide variety of Status Codes that assist the service technician and operator in trouble shooting the vehicle. If mis-operation of the vehicle occurs, a status code will be displayed on the lap top personal computer, using GE Sentry for Windows software, or on the PDA handset.

With the status code number, follow the procedures outlined in DIAGNOSTIC STATUS CODES to determine the problem and appropriate corrective action.

Note: The Status Code Instruction Sheets do not purport to cover all possible causes of a display of a "status code ". They do provide instructions for checking the most direct inputs that can cause status codes to appear.

Section 2.3.1.b Stored Status Codes
This feature records the last 16 "Stored Status Codes" that have caused a PMT controller shut down and/or disrupted normal vehicle operation. (PMT type faults are reset by cycling the tow switch). These status codes, along with the corresponding BDI and hourmeter readings, can be accessed by using the RS 232 communications port and dumping the information to a Personal Computer terminal, or by the PDA with infra red communications.

Section 2.3.2 Odometer Readings

This feature will display the recorded miles of use of the traction control to the PDA handset, whenever it is requested.

Section 2.3.3 RS 232 Communication Port

This serial communication port can be used to control operating information and settings via a personal computer.

Section 2.3.4 Circuit Board Coil Driver Modules

A Coil driver is internal to the control card, and is the power device that operate the Line contactor coil. On command from the control card, these drivers initiate opening and closing the contactor coils. All driver modules are equipped with reverse battery protection, such that, if the battery is connected incorrectly, the contactors can not be closed electrically.
Section 3.0 ORDERING INFORMATION, ELEMENTARY AND OUTLINE DRAWINGS

Section 3.1 Ordering Information for Separately Excited Controls

Example:

Part Number: IC3645
Argument Number: SH 4 D 33 2 C3

Argument 01: Basic Electric Vehicle Control Number

Argument 02: Control Type:
SH = Separately Excited Control (Plugging)
SR = Separately Excited Control (Regen to Zero)

Argument 03: Operating Voltage:
1 = 120 volts
2 = 24 volts
3 = 36 volts
4 = 48 volts
5 = 36/48 volts
6 = 24/36 volts
7 = 72/80 volts

Argument 04: Package Size:
D = 6.86" X 6.67"
R = 6.86" X 8.15"
U = 8.66" X 8.13"
W = 8.66" X 10.83"
V = 5.39" X 7.79"

Argument 05: Armature Current
(2 characters)
22 = 220 Amps
33 = 330 Amps
40 = 400 Amps
etc.

Argument 06: Field Current
(1 character)
2 = 20 Amps
3 = 30 Amps
4 = 40 Amps
etc.

Argument 07: Customer / Revision
A1 = Customer A / Revision 1
B1 = Customer B / Revision 1
etc.
Section 3.2 Outline: Gen IV Package Size
Section 3.3 Standard Elementary for Golf Car Application
Section 3.4 Golf Car Application Input/Output List

Connections to Main Plug (23 Pin)

<table>
<thead>
<tr>
<th>PIN</th>
<th>MAIN PLUG INPUT/OUTPUT DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BATTERY VOLTS FROM TOW SWITCH</td>
</tr>
<tr>
<td>2</td>
<td>BATTERY VOLTS FROM TOW SWITCH</td>
</tr>
<tr>
<td>3</td>
<td>BATTERY VOLTS FROM ACCELERATOR START SWITCH</td>
</tr>
<tr>
<td>4</td>
<td>BATTERY VOLTS FROM FORWARD SWITCH</td>
</tr>
<tr>
<td>5</td>
<td>BATTERY VOLTS FROM REVERSE SWITCH</td>
</tr>
<tr>
<td>6</td>
<td>BATTERY VOLTS FROM KEY SWITCH</td>
</tr>
<tr>
<td>7</td>
<td>ACCELERATOR INPUT VOLTAGE SIGNAL</td>
</tr>
<tr>
<td>8</td>
<td>ACCELERATOR NEGATIVE</td>
</tr>
<tr>
<td>9</td>
<td>ACCELERATOR POT +5 VOLTS SUPPLY (3 WIRE POT)</td>
</tr>
<tr>
<td>10</td>
<td>BACK UP ALARM AND ZERO SPEED DETECT ALARM</td>
</tr>
<tr>
<td>11</td>
<td>LINE CONTACTOR COIL DRIVER</td>
</tr>
<tr>
<td>12</td>
<td>N/A</td>
</tr>
<tr>
<td>13</td>
<td>RS232/IrDa SWITCH</td>
</tr>
<tr>
<td>14</td>
<td>TACHOMETER INPUT SIGNAL</td>
</tr>
<tr>
<td>15</td>
<td>TACHOMETER 12 VOLT OUTPUT</td>
</tr>
<tr>
<td>16</td>
<td>NEGATIVE FOR TACH</td>
</tr>
<tr>
<td>17</td>
<td>N/A</td>
</tr>
<tr>
<td>18</td>
<td>IrDa RECEIVE</td>
</tr>
<tr>
<td>19</td>
<td>IrDa TRANSMIT</td>
</tr>
<tr>
<td>20</td>
<td>NEGATIVE IrDa SENSOR</td>
</tr>
<tr>
<td>21</td>
<td>+5V IrDa SENSOR</td>
</tr>
<tr>
<td>22</td>
<td>SERIAL RECEIVE</td>
</tr>
<tr>
<td>23</td>
<td>SERIAL TRANSMIT</td>
</tr>
</tbody>
</table>
Section 4.0 TROUBLESHOOTING AND DIAGNOSTIC STATUS CODES

Section 4.1 General Maintenance Instructions

The transistor control, like all electrical apparatus, does have some thermal losses. The semiconductor junctions have finite temperature limits, above which these devices may be damaged. For these reasons, normal maintenance should guard against any action which will expose the components to excessive heat and/or those conditions which will reduce the heat dissipating ability of the control, such as restricting air flow.

The following Do’s and Don’t’s should be observed:

Any controls that will be applied in ambient temperatures over 100° F (40° C) should be brought to the attention of the vehicle manufacturer.

All external components having inductive coils must be filtered. Refer to vehicle manufacturer for specifications.

The wiring should not be directly steam cleaned. In dusty areas, blow low-pressure air over the control to remove dust. In oily or greasy areas, a mild solution of detergent or denatured alcohol can be used to wash the control, and then low-pressure air should be used to completely dry the control.

For the control to be most effective, it must be mounted against the frame of the vehicle. The metal vehicle frame, acting as an additional heat sink, will give improved vehicle performance by keeping the control package cooler. Apply a thin layer of heat-transfer grease (such as Dow Corning 340) between the control heat sink and the vehicle frame.

Control wire plugs and other exposed transistor control parts should be kept free of dirt and paint that might change the effective resistance between points.

CAUTION: The vehicle should not be plugged when the vehicle is jacked up and the drive wheels are in a free wheeling position. The higher motor speeds can create excessive voltages that can be harmful to the control.

Do not hipot (or megger) the control. Refer to control manufacturer before hipotting.

Use a lead-acid battery with the voltage and ampere hour rating specified for the vehicle. Follow normal battery maintenance procedures, recharging before 80 percent discharged with periodic equalizing charges.

Visual inspection of GE contactors contained in the traction and pump systems is recommended to occur during every 1000 hours of vehicle operation. Inspection is recommended to verify that the contactors are not binding and that the tips are intact and free of contaminants.

GE does not recommend that any type of welding be performed on the vehicle after the installation of the control(s) in the vehicle. GE will not honor control failures during the warranty period when such failures are attributed to welding while the control is installed in the vehicle.

Section 4.2 Cable Routing and Separation

Electrical noise from cabling of various voltage levels can interfere with a microprocessor-based control system. To reduce this interference, GE recommends specific cable separation and routing practices, consistent with industry standards.

Section 4.2.1 Application Responsibility

The customer and customer’s representative are responsible for the mechanical and environmental locations of cables. They are also responsible for applying the level rules and cabling practices defined in this section.

To help ensure a lower cost, noise-free installation, GE recommends early planning of cable routing that complies with these level separation rules.

On new installations, sufficient space should be allowed to efficiently arrange mechanical and electrical equipment.

On vehicle retrofits, level rules should be considered during the planning stages to help ensure correct application and a more trouble-free installation.

Section 4.2.2 Signal/PowerLevel Definitions

The signal/power carrying cables are categorized into four defining levels: low, high, medium power, and high power. Within those levels, signals can be further divided into classes.

Sections 4.2.2.a through 4.2.2.d define these levels and classes, with specific examples of each. Section 4.2.3 contains recommendations for separating the levels.
4.2.2.a Low-Level Signals (Level L)

Low-level signals are designated as level L. These consist of:

- Analog signals 0 through ±15 V
- Digital signals whose logic levels are less than 15 V DC
- 4 – 20 mA current loops
- DC busses less than 15 V and 250 mA

The following are specific examples of level L signals used in drive equipment cabling:

- Control common tie
- DC busses feeding sensitive analog or digital hardware
- All wiring connected to components associated with sensitive analog hardware with less than 5V signals (for example, potentiometers and tachometers)
- Digital tachometers and resolvers
- Dash display cabling
- RS-232 cabling

Note: Signal inputs to analog and digital blocks should be run as shielded twisted-pair (for example, inputs from tachometers, potentiometers, and dash displays).

4.2.2.b High-Level Signals (Level H)

High-level signals are designated as level H. These signals consist of:

- Analog and digital signals greater than 15 V DC and less than 250 mA

For example, switch inputs connected to battery volts are examples of level H signals used in drive equipment cabling.

4.2.2.c Medium-Power Signals (Level MP)

Medium power signals are designated as level MP. These signals consist of:

- DC switching signals greater than 15 V
- Signals with currents greater than 250 mA and less than 10A

The following are specific examples of level MP signals used in drive equipment cabling:

- DC busses less than 10 A
- Contactor coils less than 10 A
- Machine fields less than 10 A

4.2.2.d. High Power Signals (Level HP)

Power wiring is designated as level HP. This consists of DC buses and motor wiring with currents greater than 10 A.

The following are specific examples of level HP signals used in drive equipment cabling:

- Motor armature loops
- DC outputs 10 A and above
- Motor field loops 10 A and above

4.2.3. Cable Spacing Guidelines

Recommended spacing (or clearance) between cables (or wires) is dependent on the level of the wiring inside them. For correct level separation when installing cable, the customer must apply the general guidelines (section 4.2.3.a), outlined below.

4.2.3.a General Cable Spacing

The following general practices should be used for all levels of cabling:

- All cables and wires of like signal levels and power levels must be grouped together.
- In general, different levels must run in separate wire bundles, as defined in the different classes, identified above. Intermixing cannot be allowed, unless noted by exception.
- Interconnecting wire runs should carry a level designation.
- If wires are the same level and same type signal, group those wires from one location to any other location together in multiconductor cables or bind them together with twine or zip-ties.
- When unlike signals must cross, cross them in 90° angles at a maximum spacing. Where it is not possible to maintain spacing, place a grounded steel barrier between unlike levels at the crossover point.

4.2.4 Cabling for Vehicle Retrofits

Reducing electrical noise on vehicle retrofits requires careful planning. Lower and higher levels should never encircle each other or run parallel for long distances.

It is practical to use existing wire runs or trays as long as the level spacing (see section 4.2.2) can be maintained for the full length of the run.

Existing cables are generally of high voltage potential and noise producing. Therefore, route levels L and H in a path separate from existing cables, whenever possible.

For level L wiring, use barriers in existing wire runs to minimize noise potential.
Do not loop level L signal wires around level H, level MP, or HP wires.

4.2.5 RF Interference

To prevent radio frequency (RF) interference, care should be taken in routing power cables in the vicinity of radio-controlled devices.

Section 4.2.6 Suppression

Unless specifically noted otherwise, suppression (for example, a snubber) is required on all inductive devices controlled by an output. This suppression minimizes noise and prevents damage caused by electrical surges.

Section 4.3 Recommended Lubrication of Pins and Sockets Prior to Installation

Beginning in January of 1999, GE implemented the addition of a lubricant to all connections using pins and sockets on EV100/EV200 and Gen II products. Any connection made by GE to the A, B, X, Y, or Z plugs, includes the lubricant NYE 760G to prevent fretting of these connections during vehicle operation.

Fretting occurs during microscopic movement at the contact points of the connection. This movement exposes the base metal of the connector pin which, when oxygen is present, allows oxidation to occur. Sufficient build up of the oxidation can cause intermittent contact and intermittent vehicle operation. This can occur at any similar type of connection, whether at the control or in any associated vehicle wiring, and the resultant intermittent contact can provide the same fault indication as actual component failure.

The addition of the NYE 760G lubricant will prevent the oxidation process by eliminating the access of oxygen to the contact point. GE recommends the addition of this lubricant to the 12 pin and 23 pin plugs of all new Gen II controls at the time of their installation into a vehicle.

When servicing existing vehicles exhibiting symptoms of intermittent mis-operation or shutdown by the GE control, GE recommends the addition of this lubricant to all 12 and 23 pin plugs, after proper cleaning of the connectors, as a preventative measure to insure fretting is not an issue before GE control replacement. Also, for long term reliable control operation, the plug terminals must be maintained per these instructions with the recommended contact cleaner and lubricant which provides a high degree of environmental and fretting protection.

New and re-manufactured control plugs are cleaned and lubricated prior to shipment from the factory. However, in applications where severe vibration or high temperature cycling and excessive humidity (such as freezers) are present, it is recommended that the plug terminals be cleaned and lubricated every year, per these instructions. In normal applications, plug maintenance should be performed every two years, unless intermittent problems arise with the plugs, requiring more immediate attention. Warning: Do not use any other cleaners or lubricants other than the ones specified.

WARNING: Before conducting maintenance on the vehicle, jack up the drive wheels, disconnect the battery and discharge the capacitors. Consult the Operation and Service Manual for your particular vehicle for details on discharging the capacitors; this procedure differs between SCR and Transistor controls.

1. Disconnect plug from controller or mating plug.
2. Locate the plug that contains the socket (female) terminals. Maintenance needs only to be performed on the plug containing the socket (female) type terminals. Reconnecting the plugs will lubricate the pin (male) terminals.
3. Clean each terminal using Chemtronics® contact cleaner "Pow-R-Wash CZ" as shown in Figure 1.

4. Lubricate each terminal using Nye® 760G lubricant as shown in figure 2. Apply enough lubricant to each terminal opening to completely fill each opening to a depth of .125” maximum.

Figure 1
Reference

<table>
<thead>
<tr>
<th>Cleaner</th>
<th>Chemtronics® Pow-R-WasH CZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Cleaner</td>
<td></td>
</tr>
<tr>
<td>Lubricant</td>
<td>Nye® Lubricants NYOGEL® 760G</td>
</tr>
<tr>
<td>GE Lub Kit</td>
<td>Contains both above products:</td>
</tr>
<tr>
<td></td>
<td>328A1777G1</td>
</tr>
</tbody>
</table>

Section 4.4 General Troubleshooting Instructions

Trouble-shooting the ZX family of controls should be quick and easy when following the instructions outlined in the following status code instruction sheets.

If mis-operation of the vehicle occurs, a status code will be displayed on the Dash Display (for vehicles equipped with a Dash Display) or made available by plugging a Handset into the plug "Y" location, and then reading the status code.

With the status code number, follow the procedures outlined in the status code instruction sheets to determine the problem.

Important Note: Due to the interaction of the logic card with all vehicle functions, almost any status code or control fault could be caused by the logic card. After all other status code procedures have been followed and no problem is found, the controller should then be replaced as the last option to correct the problem.

The same device designations have been maintained on different controls but the wire numbers may vary. Refer to the elementary and wiring diagrams for your specific control. The wire numbers shown on the elementary diagram will have identical numbers on the corresponding wiring diagrams for a specific vehicle, but these numbers may be different from the numbers referenced in this publication.

WARNING: Before trouble-shooting, jack up the drive wheels, disconnect the battery and discharge the capacitors. Reconnect the battery as needed for specific checks. Capacitors should be discharged by connecting a 200 ohm 2 watt resistor between the positive and negative terminals on the control panel.

Check resistance on R x 1000 scale from frame to power and control terminals. A resistance of less than 20,000 ohms can cause misleading symptoms. Resistance less than 1000 ohms should be corrected first.

Before proceeding, visually check for loose wiring, mis-aligned linkage to the accelerator switch, signs of overheating of components, etc.

Tools and test equipment required are: clip leads, volt-ohm meter (20,000 ohms per volt) and basic hand tools.
Section 4.5 Traction Control Codes

<table>
<thead>
<tr>
<th>TRACTION STATUS CODE</th>
<th>DESCRIPTION OF STATUS</th>
<th>CAUSE OF STATUS INDICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>Segments do not illuminate on the Dash Display and/or the Handset.</td>
<td>No input voltage to the control card or the display unit.</td>
</tr>
</tbody>
</table>

MEMORY RECALL

NO

CORRECTIVE ACTIONS

SYMPTOM
Display screen on Dash Display and/or Handset is blank.

POSSIBLE CAUSE
Positive or negative control voltage is not present.
- Insure that the tow switch is closed and voltage is present between P1 & battery negative (Power Terminal “NEG”). Also check for voltage between P2 and control negative.

- Open circuit between control card Plug Y & the Dash Display or Handset.
- Check for an open circuit or loose connection going from the “Y” plug and the Dash Display or Handset.

- Defective Dash Display or Handset.
- Replace Dash Display or Handset.

TROUBLE-SHOOTING DIAGRAM

<table>
<thead>
<tr>
<th>TRACTION STATUS CODE</th>
<th>DESCRIPTION OF STATUS</th>
<th>CAUSE OF STATUS INDICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>-05</td>
<td>Start switch fails to close.</td>
<td>This status code will be displayed when the accelerator voltage at P7 is >1.4V, with the start switch open (P3< 50% of battery volts)</td>
</tr>
</tbody>
</table>

MEMORY RECALL

NO

CORRECTIVE ACTIONS

SYMPTOM
Control will not operate.

POSSIBLE CAUSE
Defective start switch circuit.
- Check start switch to insure closure when accelerator pedal is depressed.
- Check for open circuit or loose connections in start switch wiring.

- Defective accelerator switch.
- Check accelerator switch potentiometer for proper operation and ohmic value

TROUBLE-SHOOTING DIAGRAM

August 2006
Traction Status Codes

SX Transistor Control

<table>
<thead>
<tr>
<th>Traction Status Code</th>
<th>Description of Status</th>
<th>Cause of Status Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>-06</td>
<td>Accelerator pedal is depressed with no direction selected.</td>
<td>This status code will be displayed when the accelerator voltage, at P7 > 1.4V, and no direction is selected (P4 and P5 are both less than 50% of battery volts).</td>
</tr>
</tbody>
</table>

Memory Recall

Corrective Actions

Symptom

Control will not operate.

Possible Cause

Accelerator pedal is depressed before closing forward or reverse directional switch.
- Status code will disappear when directional switch is closed or when accelerator pedal is released.
- Defective directional switch
 - Check forward or reverse switch to insure closure when direction is selected.
- Open circuit between directional switch(es) and battery positive or between directional switch(es) and P4 or P5.
 - Check all control wires and connections shown in trouble shooting diagram.

Traction Status Code

<table>
<thead>
<tr>
<th>Traction Status Code</th>
<th>Description of Status</th>
<th>Cause of Status Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>-08</td>
<td>Accelerator voltage input is too high on power up after initial key switch closure.</td>
<td>This status code will be displayed when the accelerator input voltage at P7 > 0.9V when the tow switch or key switch is opened and closed.</td>
</tr>
</tbody>
</table>

Memory Recall

Corrective Actions

Symptom

Control will not operate

Possible Cause

Accelerator input is mis-adjusted or defective.
- Input voltage at P7 should be less than 0.9 volts. Adjust or replace accelerator unit to insure that the voltage at P7 is less than 0.9 volts before depressing pedal.
- Defective potentiometer. Verify correct operation of potentiometer, and replace pot assembly, if necessary.
- Open circuit at P8 or open potentiometer wiper at P7 – verify continuity of wiring at both points.
TRACTION STATUS CODES
SX TRANSISTOR CONTROL

<table>
<thead>
<tr>
<th>TRACTION STATUS CODE</th>
<th>DESCRIPTION OF STATUS</th>
<th>CAUSE OF STATUS INDICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>-09</td>
<td>Both the forward and reverse switches are closed at the same time.</td>
<td>This status code will be displayed when P4 and P5 are greater than 50% of battery volts.</td>
</tr>
</tbody>
</table>

CORRECTIVE ACTIONS

SYMPTOM
Control will not operate.

POSSIBLE CAUSE
- Forward or reverse directional switch welded closed or mis-adjusted to be held closed.
- Replace or adjust directional switches to insure that they are open when directional switch is returned to neutral.
- Short circuit between battery positive and P4 and/or P5.
 - Disconnect wires from P4 and P5 and check wire for short circuit to positive side of directional switch
- Defective control.
 - Disconnect wires and measure voltage at P4 and P5. Voltage should be less than 50% of battery volts, if not, replace control.

MEMORY RECALL
NO

TROUBLE-SHOOTING DIAGRAM

<table>
<thead>
<tr>
<th>TRACTION STATUS CODE</th>
<th>DESCRIPTION OF STATUS</th>
<th>CAUSE OF STATUS INDICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>-11</td>
<td>Start switch closed on power up after initial key switch closure.</td>
<td>This status code will be displayed when P3 is greater than 50% of battery volts when the key switch is closed.</td>
</tr>
</tbody>
</table>

CORRECTIVE ACTIONS

SYMPTOM
Control will not operate.

POSSIBLE CAUSE
- Start switch is mis-adjusted or defective.
 - Input voltage at P3 should be less than 50% of battery volts at key or tow switch closure. Adjust or replace accelerator unit to insure that the voltage at P3 is less than 50% of battery volts before closing the start switch.
- Short circuit between battery positive and P3.
 - Verify continuity of wiring at both points.
- Defective control.
 - Disconnect wire from P3. Measure voltage from P3 to negative. Voltage should be zero. If not, replace the control.
Traction Status Codes

<table>
<thead>
<tr>
<th>Traction Status Code</th>
<th>Description of Status</th>
<th>Cause of Status Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>-15</td>
<td>Battery voltage is too low at initial key switch closure.</td>
<td>This status code will be displayed when the battery volts are less than 68.3 volts at initial key switch on.</td>
</tr>
</tbody>
</table>

Corrective Actions

Symptom
Control will not operate.

Possible Cause
- Discharged battery
 - Check battery voltage to confirm that it is above 34 volts. Charge battery, if required.
- Defective battery
 - Check each battery cell for proper voltage (greater than 1.95 volts at cell). Replace or repair battery.
- Check "minimum" battery volts at P1 & NEG.

Troubleshooting Diagram

![Troubleshooting Diagram]

<table>
<thead>
<tr>
<th>Traction Status Code</th>
<th>Description of Status</th>
<th>Cause of Status Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>-16</td>
<td>Battery voltage is too high at initial key switch closure.</td>
<td>This status code will be displayed when the battery volts are greater than 86 volts at initial key switch on.</td>
</tr>
</tbody>
</table>

Corrective Actions

Symptom
Control will not operate.

Possible Cause
- Discharged battery
 - Check battery voltage to confirm that it is a minimum of 68.3 volts. Charge battery, if required.
- Battery overcharged or incorrect battery used.
 - Check each battery cell for proper voltage (maximum 2.4 volts per cell). If voltage is excessive, check battery charger for proper output voltage.
- Check "maximum" battery volts at P1 & NEG.

Troubleshooting Diagram

![Troubleshooting Diagram]
<table>
<thead>
<tr>
<th>TRACTION STATUS CODE</th>
<th>DESCRIPTION OF STATUS</th>
<th>CAUSE OF STATUS INDICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>-21</td>
<td>Accelerator voltage is too high.</td>
<td>This status code will be displayed when the accelerator voltage at P7 is greater than 4.5 volts.</td>
</tr>
</tbody>
</table>

MEMORY RECALL

NO

CORRECTIVE ACTIONS

TROUBLE-SHOOTING DIAGRAM

Circuits valid for Traction Controller

SYMPTOM

Control will not operate.

POSSIBLE CAUSE

- Accelerator input is mis-adjusted or defective.
- Input voltage at P7 should be less than 4.5 volts after initial tow switch closure.
- Open wire exists between potentiometer negative and P8.
- Open wire exists between P7 and potentiometer wiper.
- Defective potentiometer in accelerator pedal. Verify that potentiometer is operating correctly, and replace potentiometer unit, if necessary.

<table>
<thead>
<tr>
<th>TRACTION STATUS CODE</th>
<th>DESCRIPTION OF STATUS</th>
<th>CAUSE OF STATUS INDICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>-23</td>
<td>Motor field current is too high when the key switch is turned on.</td>
<td>This status code will be displayed when the current draw in the motor field is too high on start up.</td>
</tr>
</tbody>
</table>

MEMORY RECALL

NO

CORRECTIVE ACTIONS

TROUBLE-SHOOTING DIAGRAM

Circuits valid for Traction Controller

SYMPTOM

Control will not operate.

POSSIBLE CAUSE

- Recalibration of field amplifiers may be required.
 - Contact authorized GE Servicenter for regarding repair.
- Defective control.
 - Replace controller unit.

NO GRAPHIC FOR THIS STATUS CODE

August 2006
Diagnostic Status Codes

-24

<table>
<thead>
<tr>
<th>Description of Status</th>
<th>Cause of Status Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor field current is too high on when the key switch is turned on.</td>
<td>This status code will be displayed when the current draw in the motor field is too high on start up.</td>
</tr>
</tbody>
</table>

Memory Recall

<table>
<thead>
<tr>
<th>Corrective Actions</th>
</tr>
</thead>
</table>
| SYMPTOM
Control will not operate. |
| POSSIBLE CAUSE
Recalibration of field amplifiers may be required.
- Contact authorized GEServicenter for regarding repair. |
| Defective control.
- Replace controller unit. |

Traction Status Code

<table>
<thead>
<tr>
<th>Status Code</th>
<th>Description of Status</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>-27</td>
<td>12V bus is too low.</td>
<td>This status code will be displayed when the internal power supply of the control dips below 9.35V.</td>
</tr>
</tbody>
</table>

Memory Recall

<table>
<thead>
<tr>
<th>Corrective Actions</th>
</tr>
</thead>
</table>
| SYMPTOM
Control will not operate. |
| POSSIBLE CAUSE
Discharged battery.
- Check battery to insure proper state of charge. Voltage may be dropping below 15V under load. |
| Loose connection at P1.
- Insure that the wire connection at P1 is tight. |
| Pin 15 is shorted to battery negative.
- Verify continuity and connections at both points. |
| Defective control.
- Replace controller unit. |

Traction Status Code

<table>
<thead>
<tr>
<th>Status Code</th>
<th>Description of Status</th>
<th>Cause of Status Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>-41</td>
<td>Shorted thermal protector (TP) or transistor over temperature.</td>
<td>This status code will be displayed when the voltage at the thermal protector is too low.</td>
</tr>
</tbody>
</table>
Traction Status Codes

<table>
<thead>
<tr>
<th>Traction Status Code</th>
<th>Description of Status</th>
<th>Cause of Status Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>-42</td>
<td>Motor armature offset voltage is too high.</td>
<td>This status code will be displayed when the value of motor amps is greater than 138 (corresponding to 2.7 volts) with no current flowing in the motor circuit.</td>
</tr>
</tbody>
</table>

Circuits Valid for Traction Controller

Symptom:
- Reduced or no power to traction motor in control range.

Possible Cause:
- Control is in thermal cut back.
- Allow control to cool, status code should disappear.
- Defective control.
- Replace controller unit.

Values of less than 1 V at the thermal protector are typically indicative of a failed control.

GE Sentry for Windows software can be used to monitor control operation, and it will display a value for the thermal protector that is greater than 84 (corresponding to 1.65V), triggering this status code.

Memory Recall

<table>
<thead>
<tr>
<th>Memory Recall</th>
<th>Corrective Actions</th>
<th>Troubleshooting Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES</td>
<td>SYMPTOM Reduced or no power to traction motor in control range. POSSIBLE CAUSE Control is in thermal cut back. Allow control to cool, status code should disappear. Defective control. Replace controller unit.</td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td>CIRCUITS VALID FOR TRACTION CONTROLLER SYMPTOM Control will not operate. POSSIBLE CAUSE Defective control. Replace controller unit.</td>
<td></td>
</tr>
</tbody>
</table>

GE Sentry for Windows software can be used to monitor control operation, and it will display a value for the motor amps that is greater than 138, (corresponding to 2.7V), triggering this status code.
DIAGNOSTIC STATUS CODES

SX TRANSISTOR CONTROL

August 2006

<table>
<thead>
<tr>
<th>MEMORY RECALL</th>
<th>CORRECTIVE ACTIONS</th>
<th>TROUBLE-SHOOTING DIAGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Circuits valid for Traction Controller | **SYMPTOM**
Control will not operate. |
| | **POSSIBLE CAUSE**
Defective control.
• Replace controller unit. |
| | **GE Sentry for Windows** software can be used to monitor control operation, and it will display a value for the motor amps that is less than 117 (corresponding to 2.3V), triggering this status code. |

MEMORY RECALL

<table>
<thead>
<tr>
<th>TRACTION STATUS CODE</th>
<th>DESCRIPTION OF STATUS</th>
<th>CAUSE OF STATUS INDICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>-44</td>
<td>Armature transistor did not turn off properly.</td>
<td>This status code will be displayed when, during control operation, the armature transistor fails to turn off. This will result in a PMT condition</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MEMORY RECALL</th>
<th>CORRECTIVE ACTIONS</th>
<th>TROUBLE-SHOOTING DIAGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Circuits valid for Traction Controller | **SYMPTOM**
Control will not operate. |
| | **POSSIBLE CAUSE**
Tow switch must be cycled to clear fault.
• Turn tow switch off for 20 seconds and then turn tow switch back on.
Defective control.
• Replace controller unit. |
| | **NO GRAPHIC FOR THIS STATUS CODE** |

<table>
<thead>
<tr>
<th>TRACTION STATUS CODE</th>
<th>DESCRIPTION OF STATUS</th>
<th>CAUSE OF STATUS INDICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>-45</td>
<td>Armature transistor did not turn on properly.</td>
<td>This status code will be displayed when, during control operation, the armature transistor fails to turn on properly. This will result in a PMT condition</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MEMORY RECALL</th>
<th>CORRECTIVE ACTIONS</th>
<th>TROUBLE-SHOOTING DIAGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Traction Status Codes

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>POSSIBLE CAUSE</th>
<th>CORRECTIVE ACTIONS</th>
</tr>
</thead>
</table>
| Control will not operate. | Tow switch must be cycled to clear fault.
 - Turn tow switch off for 20 seconds and then turn tow switch back on. |
 - Replace controller unit. |

Status Code -46

Description of Status: "Look Ahead" test for A2 volts is less than 12.5% of battery volts.

Cause of Status Indication: This status code will be displayed when the voltage at A2 is less than 12.5% of battery volts and Im is greater than 52 amps, when the control is in the neutral state, with no start switch or direction selected.

Memory Recall: Yes

Corrective Actions: TROUBLE-SHOOTING DIAGRAM

Status Code -49

Description of Status: Motor field current is too low during the run mode.

Cause of Status Indication: This status code will be displayed when the current draw in the motor field is less than 1.3 amps and armature current is greater than 100 amps for more than 1.27 seconds during the run mode.

Memory Recall: Yes

Corrective Actions: TROUBLE-SHOOTING DIAGRAM
<table>
<thead>
<tr>
<th>TRACTION STATUS CODE</th>
<th>DESCRIPTION OF STATUS</th>
<th>CAUSE OF STATUS INDICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>-51</td>
<td>Capacitor volts are low before the line contactor closes.</td>
<td>This status code will be displayed during "key on" when the capacitor volts is less than 85% of battery volts at initial tow switch on.</td>
</tr>
</tbody>
</table>

MEMORY RECALL

NO

CORRECTIVE ACTIONS

TROUBLE-SHOOTING DIAGRAM

Circuits valid for Traction Controller

SYMPTOM
- Line contactor does not close when capacitor does not pre-charge.

POSSIBLE CAUSE
- Defective control fuse.
 - Check control fuse for open circuit condition. Replace fuse, if necessary.
- Another load has been placed on the switched side of the line contactor.
- Defective control.
 - Replace controller unit.

<table>
<thead>
<tr>
<th>TRACTION STATUS CODE</th>
<th>DESCRIPTION OF STATUS</th>
<th>CAUSE OF STATUS INDICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>-57</td>
<td>Controller "motor current sensor" input is too low during running.</td>
<td>This status code will be displayed when the voltage input from the current sensor is too low (less than 1.0V, 416 amps) during running.</td>
</tr>
</tbody>
</table>

MEMORY RECALL

YES

CORRECTIVE ACTIONS

TROUBLE-SHOOTING DIAGRAM
Circuits valid for Traction Controller

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>POSSIBLE CAUSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control will not operate.</td>
<td>Line contactor did not physically close power tips.</td>
</tr>
<tr>
<td></td>
<td>• Visually inspect tips, clean them with a solvent.</td>
</tr>
<tr>
<td></td>
<td>Check all power connections at motor and control to verify that they are tight.</td>
</tr>
<tr>
<td></td>
<td>Confirm that power fuse is in good condition, or replace fuse.</td>
</tr>
<tr>
<td></td>
<td>Line contactor tips bounce or are not fully picked up.</td>
</tr>
<tr>
<td></td>
<td>Defective control.</td>
</tr>
<tr>
<td></td>
<td>• Replace controller unit.</td>
</tr>
</tbody>
</table>

NO GRAPHIC FOR THIS STATUS CODE

Traction Status Code

<table>
<thead>
<tr>
<th>Traction Status Code</th>
<th>Description of Status</th>
<th>Cause of Status Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>-64</td>
<td>SYMPTOM Control will not operate.</td>
<td>POSSIBLE CAUSES Shorted contactor driver.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No contactor coil connected to the line contactor driver.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TROUBLE-SHOOTING DIAGRAM</td>
</tr>
</tbody>
</table>

Traction Status Code

<table>
<thead>
<tr>
<th>Traction Status Code</th>
<th>Description of Status</th>
<th>Cause of Status Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>-65</td>
<td>SYMPTOM Control will not operate.</td>
<td>POSSIBLE CAUSES Shorted contactor driver.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No contactor coil connected to the line contactor driver.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TROUBLE-SHOOTING DIAGRAM</td>
</tr>
</tbody>
</table>

August 2006
Circuits valid for Traction Controller

SYMPTOM
- Control will not operate.

POSSIBLE CAUSES
- Line contactor coil is shorted.

MEMORY RECALL
- YES

CORRECTIVE ACTIONS

TROUBLE-SHOOTING DIAGRAM

Traction Status Codes

<table>
<thead>
<tr>
<th>Traction Status Code</th>
<th>Description of Status</th>
<th>Cause of Status Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>-66</td>
<td>The field current exceeds the current limit of the field transistor.</td>
<td>This status code will be displayed when the field transistor exceeds its current limit. The line contactor will drop out and the tow switch will have to be recycled to restart the control.</td>
</tr>
</tbody>
</table>

Circuits valid for Traction Controller

SYMPTOM
- Control will not operate or is sluggish on start up. Line contactor opens.

POSSIBLE CAUSES
- Shorted field F1 to F2 in the motor.
- F1 or F2 terminals shorted to battery positive (B+).
- Noise
- Confirm that all inductive loads/accessories are suppressed.

MEMORY RECALL
- YES

CORRECTIVE ACTIONS

TROUBLE-SHOOTING DIAGRAM

<table>
<thead>
<tr>
<th>Traction Status Code</th>
<th>Description of Status</th>
<th>Cause of Status Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>-76</td>
<td>Capacitor (1C) voltage too high during pedal up regen braking.</td>
<td>This status code will be displayed when the voltage at 1C exceeds 79 volts during the regenerative braking cycle.</td>
</tr>
</tbody>
</table>

MEMORY RECALL
- YES

CORRECTIVE ACTIONS

TROUBLE-SHOOTING DIAGRAM
Circuits valid for Traction Controller

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>POSSIBLE CAUSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>During regen braking, the control will suddenly stop regen braking.</td>
<td>Batteries are overcharged.</td>
</tr>
<tr>
<td>Wrong voltage battery pack is installed in vehicle.</td>
<td></td>
</tr>
<tr>
<td>Tow switch must be cycled to clear fault.</td>
<td></td>
</tr>
<tr>
<td>• Turn tow switch off for 20 seconds and then turn tow switch back on.</td>
<td></td>
</tr>
</tbody>
</table>

Traction Status Code

<table>
<thead>
<tr>
<th>STATUS CODE</th>
<th>DESCRIPTION OF STATUS</th>
<th>CAUSE OF STATUS INDICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>-77</td>
<td>Capacitor (1C) voltage too high during pedal down motoring or pedal down regen braking.</td>
<td>This status code will be displayed when the voltage at 1C exceeds 79 volts during motoring.</td>
</tr>
</tbody>
</table>

MEMORY RECALL: YES

CORRECTIVE ACTIONS

SYMPTOM

Control will not operate.

POSSIBLE CAUSE

Batteries are overcharged.

Wrong voltage battery pack is installed in vehicle.

Tow switch must be cycled to clear fault.

• Turn tow switch off for 20 seconds and then turn tow switch back on.
Section 5.0 SETUP FUNCTIONS FOR TRACTION CONTROLLER

FUNCTION 1 MPH SCALING

This function allows for the pulses from the tachometer to be scaled to miles per hour, based on the number of pulses received by the control in a given time. For example, if you were scaling to 8 MPH, it would correspond to the length of time that it took to capture 8 tachometer pulses when the vehicle is traveling at 8 MPH. Note: This function should always be calculated using MPH.

Range: 0 to 1.28 seconds
Set: 0 to 255
Resolution: 0.005 seconds per set unit
Example: Setting of 18 = 0.09 seconds

Example to determine setting:

RR = Rolling Radius (Inches)
Pi = 3.14159265
GR = Gear Ratio
PPR = Pulses per rotation of motor

Setting = \[
\frac{3600 \times 2 \times \pi \times RR}{5280 \times 12 \times GR \times PPR \times 0.005}
\]

Setting = \[
\frac{3600 \times 2 \times 3.14159265 \times 9}{5280 \times 12 \times 8.91 \times 4 \times 0.005}
\]

Setting = 203575

Setting = 18

FUNCTION 2 CREEP SPEED

This function allows for the adjustment of the creep speed of the vehicle when the start switch is closed.

Range: 0% to 12.5% on time
Set: 0 to 255
Resolution: 0.049% per set unit
Example: Setting of 205 = (205 x 0.049) + 2 = 10% on time

Important Note: The function is used to optimize motor and control performance and this setting will be determined by GE and OEM engineers at the time of vehicle development. This setting must not be changed by field personnel without the permission of the OEM.

FUNCTION 3 ARMATURE ACCELERATION RATE

This function allows for the adjustment of the rate of time it takes for the control to accelerate to 100% applied battery voltage to the motor on hard acceleration.

Range: 0.165 to 42.07 seconds
Set: 1 to 255
Resolution: 0.165 seconds per set unit
Example: Setting of 20 = 20 x 0.165 = 3.3 seconds

FUNCTION 4 MAX ARMATURE CURRENT LIMIT

This function allows for the adjustment of the armature current limit of the control during motoring.

Range: 0 to 260 amps at 48 volts
0 to 320 amps at 36 volts
Set: 0 to 255
Resolution: 1.02 amps per unit
Example:

FUNCTION 5 PLUG CURRENT LIMIT

This function allows for the adjustment of the maximum current allowed during plug braking.

Range: 32 to 338 amps
Set: 24 to 255
Resolution: 1.33 amps per unit
Example: Setting of 40 = 40 x 1.33 = 53.2 Amps

FUNCTION 6 ODOMETER CALIBRATION

This function is used to adjust the number of tachometer pulses (divided by 64) that are equivalent to 0.1 MPH.

Range: 0 to 255
Set: 0 to 255
Example:

RR = rolling radius
GR = gear ratio
PPR = pulses per rotation of motor

Setting = \[
\frac{6336 \times GR \times PPR}{6.28 \times RR \times 64}
\]

FUNCTION 7 MIN. FIELD CURRENT

This function allows the adjustment of the field weakening level in order to set the top speed of the

August 2006
motor. This function is used only when Mode 0 is selected.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Range</th>
<th>Set</th>
<th>Resolution</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>MAX FIELD CURRENT</td>
<td>0 to 20 amps</td>
<td>51 to 195</td>
<td>0.15 amps per set unit</td>
<td>Setting of 73 = (73-51) x 0.15 = 3.3 amps</td>
</tr>
<tr>
<td>9</td>
<td>REGEN ARMATURE CURRENT LIMIT</td>
<td>32 to 250 amps</td>
<td>32 to 255</td>
<td>1.0 amps per set unit</td>
<td>Setting of 221 = 221 amps</td>
</tr>
<tr>
<td>10</td>
<td>REGEN FIELD CURRENT LIMIT</td>
<td>0 to 20 amps</td>
<td>51 to 195</td>
<td>0.15 amps per set unit</td>
<td>Setting of 180 = (180-51) x 0.15 = 19.35 amps</td>
</tr>
</tbody>
</table>

CAUTION: Do not set this function to a value less than 51.

Important Note: The function is used to optimize motor and control performance and this setting will be determined by GE and OEM engineers at the time of vehicle development. This setting must not be changed by field personnel without the permission of the OEM.

FUNCTION 11 NOT APPLICABLE

This function is not applicable to this control type.

FUNCTION 12 REVERSE SPEED LIMIT

This function allows for the adjustment of the top speed of the vehicle (maximum battery volts to the motor) when it is being operated in the reverse direction.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Range</th>
<th>Set</th>
<th>Resolution</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>REVERSE SPEED LIMIT</td>
<td>100% to 0% of battery volts</td>
<td>0 to 255</td>
<td>0.392% per set unit</td>
<td>Setting of 100 = 100 x 0.392 = 32.9% speed reduction</td>
</tr>
</tbody>
</table>

FUNCTION 13 NOT APPLICABLE

This function is not applicable to this control type.

FUNCTION 14 INTERNAL RESISTANCE COMPENSATION

This function is used when the Battery Discharge Indicator is present. Adjustment of this function will improve the accuracy of the BDI. In order to determine this setting, the voltage drop of the battery under load must first be calculated by the following method:

1. Record open circuit voltage (Vo) by measuring the voltage at the control positive and negative power terminals.
2. Load the traction motor to 100 amps in 1A and record the voltage (V_{L}) at the control positive and negative power terminals.

3. Calculate voltage drop (V_{Drop}) as follows:

$$V_{Drop} = V_{O} - V_{L}$$

4. Use the table below to determine the appropriate setting using the calculated V_{Drop} as a reference.

INTERNAL RESISTANCE COMPENSATION TABLE

<table>
<thead>
<tr>
<th>Setting</th>
<th>V_{Drop}</th>
<th>Setting</th>
<th>V_{Drop}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>11.44</td>
<td>17</td>
<td>1.34</td>
</tr>
<tr>
<td>3</td>
<td>7.60</td>
<td>18</td>
<td>1.27</td>
</tr>
<tr>
<td>4</td>
<td>5.72</td>
<td>19</td>
<td>1.20</td>
</tr>
<tr>
<td>5</td>
<td>4.57</td>
<td>20</td>
<td>1.14</td>
</tr>
<tr>
<td>6</td>
<td>3.81</td>
<td>21</td>
<td>1.09</td>
</tr>
<tr>
<td>7</td>
<td>3.27</td>
<td>22</td>
<td>1.04</td>
</tr>
<tr>
<td>8</td>
<td>2.86</td>
<td>23</td>
<td>0.99</td>
</tr>
<tr>
<td>9</td>
<td>2.54</td>
<td>24</td>
<td>0.95</td>
</tr>
<tr>
<td>10</td>
<td>2.28</td>
<td>25</td>
<td>0.91</td>
</tr>
<tr>
<td>11</td>
<td>2.08</td>
<td>26</td>
<td>0.88</td>
</tr>
<tr>
<td>12</td>
<td>1.90</td>
<td>27</td>
<td>0.85</td>
</tr>
<tr>
<td>13</td>
<td>1.76</td>
<td>28</td>
<td>0.82</td>
</tr>
<tr>
<td>14</td>
<td>1.63</td>
<td>29</td>
<td>0.79</td>
</tr>
<tr>
<td>15</td>
<td>1.52</td>
<td>30</td>
<td>0.76</td>
</tr>
<tr>
<td>16</td>
<td>1.43</td>
<td>31</td>
<td>0.74</td>
</tr>
</tbody>
</table>

FUNCTION 15 BATTERY VOLTS

Setting 30 - 40 for 36 volts
Setting 41 - 55 for 48 volts

FUNCTION 16 ACCELERATOR SLOPE

<table>
<thead>
<tr>
<th>Setting</th>
<th>0%</th>
<th>100%</th>
<th>Accelerator Slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-9</td>
<td>3.5 Volt 5K Ohm</td>
<td>1.0 Volt 0 Ohm</td>
<td>Linear</td>
</tr>
<tr>
<td>10-19</td>
<td>3.5 Volt 5K Ohm</td>
<td>1.0 Volt 0 Ohm</td>
<td>Non Linear</td>
</tr>
<tr>
<td>20-29</td>
<td>.5 Volt 0 Ohm</td>
<td>3.5 Volt 5K Ohm</td>
<td>Linear</td>
</tr>
<tr>
<td>30-39</td>
<td>.5 Volt 0 Ohm</td>
<td>3.5 Volt</td>
<td>Non Linear</td>
</tr>
</tbody>
</table>

FUNCTION 17 NOT APPLICABLE

This function is not applicable to this control type.

FUNCTION 18 FIELD GAIN 2

This function adjusts the gain on the filed ramp rate when the speed error is greater than 1 MPH. *This function is used only when Mode 0 is selected.*

Important Note: The function is used to optimize motor and control performance and this setting will be determined by GE and OEM engineers at the time of vehicle development. This setting must not be changed by field personnel without the permission of the OEM.

FUNCTION 19 FIELD GAIN 1

This function adjusts the gain on the filed ramp rate when the speed error is less than 1 MPH. *This function is used only when Mode 0 is selected.*

Important Note: The function is used to optimize motor and control performance and this setting will be determined by GE and OEM engineers at the time of vehicle development. This setting must not be changed by field personnel without the permission of the OEM.

FUNCTION 20 TOP SPEED REGULATION SPEED

This function adjusts the value of the top speed point of the control around which speed regulation occurs.

Resolution: 0.1MPH per set unit
Example: Setting of 100 = 10.0 MPH

Important Note: The function is used to optimize motor and control performance and this setting will be determined by GE and OEM engineers at the time of vehicle development. This setting must not be changed by field personnel without the permission of the OEM.

FUNCTION 21 FIELD CURRENT RAMP DURING PEDAL UP REGEN

August 2006
This function adjusts the rate at which the field current ramps when the start switch is opened. **This function is used only when Mode 0 is selected.**

- **Range**: 0.001 to 0.255 seconds
- **Setting**: 0 to 255
- **Resolution**: 0.8 seconds per set unit
- **Example**: Setting of 12 = 0.012 seconds

Important Note: The function is used to optimize motor and control performance and this setting will be determined by GE and OEM engineers at the time of vehicle development. This setting must not be changed by field personnel without the permission of the OEM.

FUNCTION 22 NOT APPLICABLE

This function is not applicable to this control type.

FUNCTION 23 ERROR COMPENSATION

This function is used to reduce the ripple in field current due to the interaction between motor field design and the digital field current regulation circuit. The value for this function should be set to 0.

Important Note: The function is used to optimize motor and control performance and this setting will be determined by GE and OEM engineers at the time of vehicle development. This setting must not be changed by field personnel without the permission of the OEM.

FUNCTION 24 FIELD WEAKENING START (or MOTOR KNEE POINT)

This function allows for setting the armature current at which minimum field current will be achieved.

- **Range**: 0 to 350 Amps
- **Setting**: 0 to 255
- **Resolution**: 1.625 per set unit
- **Example**: Setting of 26 = 42 amps

Important Note: The function is used to optimize motor and control performance and this setting will be determined by GE and OEM engineers at the time of vehicle development. This setting must not be changed by field personnel without the permission of the OEM.

FUNCTION 25 MONITOR

This function allows the monitoring of certain control functions by looking directly at the RAM of the microprocessor. Because absolute memory locations need to be known, this function should not be used without detailed instructions from the GE application engineer.

To ensure optimum operation of the control, this function must be left with zero stored in this register.

FUNCTION 26 RATIO OF FIELD TO ARMATURE AMPS

This function sets the ratio between armature and field current when transitioning from minimum field to maximum field current. The setting represents the quantity of field current changed for each 1 amp of armature current changed.

<table>
<thead>
<tr>
<th>Max Chang e</th>
<th>Set</th>
<th>Resolution Per unit value</th>
<th>Example If set at 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>.18</td>
<td>0 to 255</td>
<td>0.00072 amps</td>
<td>0.072 amps</td>
</tr>
</tbody>
</table>

FUNCTION 27 HOUR METER MINUTES

This function adjusts the number of 30 second intervals registering in the hour meter. This function is typically not set by an OEM, it is usually only read from the register.

- **Range**: 0 to 60 minutes
- **Resolution**: 0.5 minutes per set unit
- **Setting**: 0 to 120
- **Example**: Setting of 60 = 60 x 0.5 = 30 minutes

FUNCTION 28 STORED STATUS CODE COUNT POINTER

This register contains the location of the last stored status code recorded of the 16 stored status codes. These stored status codes have caused a PMT controller shutdown and/or disruption of normal vehicle operation.

To determine which stored status code was the last one recorded, read the number stored in Function 28. Using the Memory Map for your logic card, match the *stored status code pointer number* [the number shown in (bold italics) in the HS (Handset) number column] on the memory map, with the...
number obtained from Function 28. This will be the last stored status code recorded.

Note: When scrolling through the stored status code register, the register always starts at status code 1 and scrolls to status code 16.

FUNCTION 29 HOUR METER TENS AND UNITS HOURS SET

This function allows for the adjustment of the tens and units hours of the hour meter.

Range 0 to 99
Set 0 to 99
Example 9999 Hours

FUNCTION 30 HOUR METER THOUSANDS AND HUNDREDS HOURS SET
(Push CONT 15)

This function allows for the adjustment of the thousands and hundreds hours of the hour meter.

Range 0 to 99
Set 0 to 99
Example 9999 Hours

FUNCTION 48 ODOMETER TENTH OF MILE OR KILOMETER SET

This function allows for the adjustment of the tenth of a mile or kilometer on the odometer.

Range 0 to 9
Set 0 to 9
Example 99999.9 Miles or Kilometers

FUNCTION 49 ODOMETER TENS AND UNITS OF MILES OR KILOMETERS SET

This function allows for the adjustment of the tens and units of miles or kilometers on the odometer.

Range 0 to 99
Set 0 to 99
Example 99999.9 Miles or KM

FUNCTION 50 ODOMETER THOUSANDS AND HUNDREDS OF MILES OR KILOMETERS SET

This function allows for the adjustment of the thousands and hundreds of miles or kilometers on the odometer.

Range 0 to 99
Set 0 to 99
Example 99999.9 Miles or Kilometers

FUNCTION 51 ODOMETER HUNDRED THOUSANDS AND TEN THOUSANDS OF MILES OR KILOMETERS SET

This function allows for the adjustment of the thousands and hundreds of miles or kilometers on the odometer.

Range 0 to 99
Set 0 to 99
Example 99999.9 Miles or Kilometers
Section 5.1 Summary of Current Limit Adjustments

The "maximum field current" setting is adjusted by Function 8. This function, along with the "maximum armature current" (Function 4), sets the maximum torque of the motor.

The "minimum field current" setting is adjusted by Function 7. The function sets the top speed of the motor.

The "field weakening start" setting is adjusted by Function 24. This function sets the armature current at which minimum field current will be achieved.

The "ratio" setting is adjusted by Function 26. This function sets the ratio between armature and field current when transitioning from minimum field to maximum field current. Setting is the value of field current changed for each 100 amps of armature current changed.

The "error compensation" setting is adjusted by Function 23. This function is used to reduce the ripple in field current due to the interaction between motor field design and the digital field current regulation circuit. The value for this function will be defined by the GE application engineer.

The "full load transition point" is calculated by the control. This function sets the maximum field current transition point at 238 amps.

The "maximum armature current" setting is adjusted by Function 4. The function along with the "maximum field current" (Function 8) sets the maximum torque of the motor.

August 2006